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ABSTRACT

Modeling uncertainty in machining, caused by modeling inaccuracy, noise and process time-
variability due to tool wear, hinders application of traditional optimization to minimize cost
or production time. Process time-variability can be overcome by adaptive control optimization
(ACO) to improve machine settings in reference to process feedback so as to satisfy constraints
associated with part quality and machine capability. However, ACO systems rely on process
models to de�ne the optimal conditions, so they are still a�ected by modeling inaccuracy and
noise. This paper presents the method of Recursive Constraint Bounding (RCB) which is de-
signed to cope with modeling uncertainty as well as process time-variability. RCB uses a model,
similar to other ACO methods. However, it considers con�dence levels and noise bu�ers to ac-
count for degrees of inaccuracy and randomness associated with each modeled constraint. RCB
assesses optimality by measuring the slack in individual constraints after each part is completed
(cycle), and then rede�nes the constraints to yield more aggressive machine settings for the next
cycle. In this paper, enhancements to RCB are presented and demonstrated in application to
internal cylindrical plunge grinding.



1 INTRODUCTION

Enhancing productivity is a continuing objective in manufacturing research. Typical measures
of manufacturing productivity are production time or cost, and/or part quality. Approaches
that have been proposed to improve these measures attempt to regulate measurements of process
behavior and part quality by adjusting machine settings in response to new measurements as they
become available from the process. For processes where analytical models have been developed,
these models are used as the basis for adjusting the machine settings.

Model based approaches to enhancing process e�ciency rely on a previously developed an-
alytical model to provide a mapping between machine settings and measurements that can be
used to select machine settings by solving a traditional constrained optimization problem [4, 9].
However, traditional optimization methods are hindered by modeling uncertainty. Sources of
modeling uncertainty in manufacturing processes are (1) the diversity of manufacturing con-
ditions due to variations in material properties, tool type, and lubrication, (2) the stochastic
nature of these processes caused by material inhomogeneity, workpiece misalignment, and mea-
surement noise, and (3) their time-variability due to tool wear. Since analytical models do not
generally account for these sources of uncertainty, traditional optimization methods are unlikely
to result in acceptable part quality.

The Recursive Constraint Bounding (RCB) methodology relies on concepts from adaptive
control and optimization. In adaptive control, the distances from part quality measurements
to their speci�cations are used to characterize the state of the process. In optimization, a sub-
problem is set up and solved in terms of information derived from the process using techniques
such as �nite perturbation and regression. The unique contribution of RCB is that it combines
these two concepts by adapting the optimization sub-problem based on the distances of the part
quality measurements from their speci�cations. This paper addresses enhancements to the RCB
methodology for improving robustness, functionality, and exibility.

2 BACKGROUND

Perhaps the simplest model-based approach that has been applied to regulation of process
behavior and part quality in manufacturing processes is Adaptive Control with Constraints
(ACC). In ACC, power or cutting force is regulated at a speci�ed level by adjusting machine
settings [3, 11, 14, 16]. Although ACC can avoid interruptions in the cut due to tool break-
ages in machining, or safeguard against thermal damage (burn) to the workpiece in grinding,
it is not explicitly designed to improve process e�ciency in terms of production cost or time.
The Adaptive Control approach which explicitly addresses process e�ciency is referred to as
Adaptive Control Optimization (ACO) [1]. In ACO, the machine settings are adapted so as to
minimize production cost or cycle time while satisfying constraints in response to part and/or
process feedback. This interactive approach to process regulation enables the ACO systems to
cope with modeling uncertainty, which is a primary factor hindering regulation of manufacturing
processes.

The earliest attempt at ACO was the Bendix System [2], where the machining removal rate
was continually maximized through changes in the feedrate and spindle speed in response to
feedback measurements of cutting torque, tool temperature, and machine vibration. However,
the Bendix System was limited in applicability due to the need to estimate tool wear based
on an accurate model. A subsequent advancement in ACO was the Optimal Locus Approach
[1, 10], which made it possible to forego estimation of tool wear. In this approach, the locus of
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the optimal points associated with various levels of tool wear is computed, and the true optimal
point is sought where process and part quality constraints become tight. The Optimal Locus
Approach can avoid estimation of tool wear by using the tightness of constraints as the measure
for optimality. However, it still relies on the accuracy of the process model for computing the
optimal locus and determining `a priori' which constraints are tight at the optimum. Since the
success of this approach depends on the premise that modeling uncertainty has a negligible e�ect
on the accuracy of the optimal locus, it will produce sub-optimal results when this premise is
invalid.

The �rst ACO method based on RCB was RCB1 [5, 6] which was designed to interact closely
with a nonlinear program throughout the search process so as to ensure constraint satisfaction.
Given the prospective values of machine settings, RCB1 supplies the most conservative values of
the uncertain parameters of the model for each iteration of the nonlinear program. It relies upon
speci�cations of bias limits for individual uncertain parameters of the model and rules derived
from a monotonicity analysis [15] to determine the conservative parameter values. Although
RCB1 is e�ective in achieving minimum production time within a few cycles, it needs to be
customized for individual applications, which limits its applicability to new processes.

The second ACO method based on RCB was RCB2 [7, 8] which was developed to overcome
the di�culties posed by modeling uncertainty. Like the Optimal Locus Approach and RCB1,
RCB2 assesses optimality from the tightness in the constraints using measurements of process
and part quality after each workpiece has been �nished (cycle). It also uses the model of the
process to �nd the optimal point. However, RCB2 is signi�cantly more straightforward to apply
than RCB1, since it only requires con�dence levels associated with each uncertain constraint,
as opposed to bias limit speci�cations for each uncertain model parameter. Furthermore, RCB1

updates its analysis of the model between iterations of the nonlinear program, whereas RCB2

does not. Therefore, RCB1 is much more di�cult to apply, since it must be integrated into the
nonlinear programming algorithm. In contrast to the Optimal Locus Approach, RCB2 assumes
the model to be uncertain when determining which constraints are to be tight at the optimum
and selecting the machine settings for each process cycle. It obtains the machine settings by
solving a customized nonlinear programming (NLP) problem, and allows for uncertainty by
incorporating conservatism into the NLP problem.

Under deterministic conditions (no modeling uncertainty), the NLP problem would yield
the optimal machine settings for the process. In practice, however, the optimal point of the
model di�ers from that of the process, due to inherent modeling inaccuracies and randomness
associated with constraints. As such, there is a strong possibility that the optimal point of the
model will violate the process and part quality constraints, thus producing scrap. In order to
avoid constraint violation, a recursive approach to constraint tightening (bounding) is adopted
in RCB2. The distance from the constraint measurements of the cycle just completed to the
absolute limit of the constraint is de�ned as the slack in each constraint. The NLP problem
is then formulated so as to minimize the objective function (usually cycle-time or cost) while
removing a portion of these slacks, thus yielding more aggressive machine settings for the next
cycle. In RCB2, the slack portions removed for each cycle are de�ned in terms of the con�-
dence levels and noise bu�ers which account for the inaccuracy and randomness, respectively,
of individual modeled constraints. The consideration of separate con�dence levels and noise
bu�ers for individual constraints in RCB2 enables the convergence of individual constraints to
be tailored according to the severity of modeling uncertainty associated with each constraint.
The repeated minimization of the objective function with progressively smaller slacks leads to
tight constraints and optimal machine settings.
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This paper addresses enhancements to the RCB methodology for improving robustness,
functionality, and exibility. These enhancements include new techniques for estimating the
probability of constraint satisfaction and automating the computation of noise bu�ers and the
capability to set convergence criterion in terms of maximum constraint violation probabilities.
In this paper, these enhancements to Recursive Constraint Bounding are demonstrated in cycle-
time reduction of cylindrical plunge grinding.

3 RCB METHODOLOGY

In this section, enhancements to Recusive Constraint Bounding (RCB) are developed. In RCB,
the optimization sub-problem is formulated with a �xed model and adapted based on measure-
ments of part quality for each part. The basic methodology is described in subsection 3.1, and
the enhancements are presented in subsection 3.2.

3.1 Basic Methodology

Optimization of a machining process can be considered as a constrained nonlinear programming
(NLP) problem where the machine settings correspond to the control variables, and the process
and part quality measurements to the constraints. In general, a constrained NLP problem is
de�ned as [12]:

minimize : f(x) (1)

subject to : g(x) � 0 (2)

h(x) = 0 (3)

xLB � x � xUB (4)

where f(x) represents the objective function, x = [x1; � � � ; xn] denotes the vector of machine
settings, g(x) = [g1(x); � � � ; gm(x)] and h(x) = [h1(x); � � � ; hp(x)] constitute the vectors of in-
equality and equality constraints, respectively, and xLB and xUB represent the lower and upper
bounds of the machine settings, respectively. For machining processes, the objective function
f(x) usually represents cycle-time or cost, and the constraints are associated with part qual-
ity and/or machine limitations. Conventional optimization algorithms generally assume the
constraints to be deterministic functions of the control variables. However, the constraints in
manufacturing processes are more accurately represented as random variables whose probability
distributions are functions of the control variables and are time-variant. The salient feature of
Recursive Constraint Bounding is the ability to e�ciently manipulate the constraints' probabil-
ity distributions.

RCB relies on the premise that analytical models of machining processes are of the correct
form, although they may be imprecise. As such, RCB is designed to take advantage of the form
of the relationships provided by these models, but to compensate for their inaccuracies using
measurements of process behavior and part quality as feedback. The basic role of RCB is to
assess the optimality of the process after each cycle from the measurements of process and part
quality and change the machine settings for the next cycle (see Fig. 1). RCB obtains the machine
settings by solving a NLP problem that has been customized for each cycle. These customized
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NLP problems are obtained by rede�ning the inequality constraints (Inequality (2)) as

ĝ(x(j)) � ĝ(x(j � 1)) � c[g(x(j � 1)) + n] (5)

to lead to a more aggressive set of machine settings when used as the basis for nonlinear op-
timization. Equation (5) rede�nes the upper limit of the inequality constraints for the current
cycle ĝ(x(j)) in terms of the previous modeled constraint value ĝ(x(j � 1)), the previous mea-
sured constraint value g(x(j � 1)), the con�dence levels c and the noise bu�ers n, representing
the allowable changes for the individual modeled constraints. Assuming that the process is
initiated with conservative machine settings that satisfy the actual constraints, the con�dence
levels and noise bu�ers control how much the nonlinear program should tighten the constraints
from one iteration to the next.

Process
measurements

optimal
?

Current Machine Settings

no

yes

Update
Redefined
Constraints

NLP
New

Machine
Settings

Figure 1: Schematic of RCB.

In order to clarify how the constraint rede�nition for RCB was developed, consider that
the value of the constraints cannot be accurately determined from the process model (i.e.,
g(x) 6= ĝ(x)) due to modeling inaccuracies and randomness. Therefore, machine settings that
would minimize the objective function while satisfying ĝ(x) � 0 do not necessarily ensure
g(x) � 0. In machining, it is generally possible to select conservative settings that satisfy the
constraints. After the process is initiated with such settings, RCB selects the machine settings
such that the objective function will be reduced without violating the constraints.

In order to ensure constraint satisfaction, the machine settings for the next cycle x(j) need
to be selected such that g(x(j)) � 0. However, the only information available to RCB is in the
form of the model and constraint measurements from the cycle just completed. Therefore, the
rede�ned constraints that replace Inequality (2) need to be formulated in terms of ĝ(x(j)) as

ĝ(x(j)) � U (6)

The main contribution of RCB is its de�nition of this upper bound such that it is robust to
modeling inaccuracy and randomness in the constraint values. As was stated earlier, RCB
relies on the premise that the model of the process correctly represents its form. Based on this
premise, the assumption is made here that this model approximately represents the changes in
the constraints due to changes in the machine settings, as

g(x(j)) � g(x(j � 1)) ' ĝ(x(j)) � ĝ(x(j � 1)) (7)

Although modeling inaccuracy and randomness prevent RCB from directly using the above
equation for rede�ning the constraints, it provides the basis for relating g(x(j)) to g(x(j � 1)),
as well as to ĝ(x(j)) and ĝ(x(j � 1)) which are available to RCB from the model.
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In RCB, allowance for randomness is provided by noise bu�ers, n = [n1; :::; nm], which de�ne
the width of the noise distributions of g(x). If adequate constraint measurements are available,
the noise bu�er ni can be obtained as

ni = kisi (8)

where si represents the standard deviation of the constraint measurements and ki denotes a
constant typically between 6 and 12. The noise bu�er ni can alternatively be estimated based
on experience if adequate constraint measurements are unavailable. In order to explain how the
noise bu�ers are utilized to establish upper bounds on the constraints, let us consider a case
where the machine settings for the next cycle are very close to the settings for the cycle just
completed, that is x(j) = x(j � 1)+ � ' x(j� 1). For this case, the upper bounds on the actual
constraint values can be de�ned as

g(x(j � 1) + �)� g(x(j � 1)) � [ĝ(x(j � 1) + �)� ĝ(x(j � 1))] + n (9)

This inequality provides an upper bound on the change in the constraint measurements, but it
is limited to in�nitesimal changes in the machine settings. In cases where x(j) 6= x(j � 1) + �,
modeling inaccuracy could result in changes in the constraint measurements that are larger than
[ĝ(x(j))�ĝ(x(j�1))]+n: In order to extend Inequality (9) so that larger changes in the machine
settings can be accommodated, con�dence levels c 2 [0; 1] are introduced on the right hand side
of inequality (9) as

g(x(j)) � g(x(j � 1)) �
1

c
[ĝ(x(j)) � ĝ(x(j � 1))] + n (10)

to account for the inaccuracy of individual modeled constraints. With the inclusion of the
con�dence levels, the upper bounds established in terms of the modeled values of constraints
(right hand side of Inequality (10)) can be made su�ciently large so as to account for modeling
inaccuracy associated with individual constraints. Accordingly, smaller con�dence levels can be
selected for constraints that are less accurately represented by the model so that a larger upper
bound will be placed on the changes in the constraints.

While Inequality (10) de�nes the upper bound on the actual constraint changes, it does not
provide the upper bound on ĝ(x(j)) (U in Inequality (6)) that is needed for rede�nition of the
NLP problem. In order to develop this upper bound, we note that the absolute requirement in
the NLP problem is g(x(j)) � 0. This is equivalent to

g(x(j)) � g(x(j � 1)) � 0� g(x(j � 1)) (11)

which de�nes the absolute limit on changes in the actual constraints. Satisfaction of this absolute
limit in light of Inequality (10) is ensured when

1

c
[ĝ(x(j)) � ĝ(x(j � 1))] + n � 0� g(x(j � 1)) (12)

which states that the upper bound for Inequality (10) must be less than or equal to the up-
per bound for Inequality (11). Inequality (12) provides the basis for de�ning the upper limit
on ĝ(x(j)) (U in Inequality (6)) so that constraint satisfaction is guaranteed. Rearranging
Inequality (12) yields

ĝ(x(j)) � ĝ(x(j � 1)) � c[g(x(j � 1)) + n] (13)
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which de�nes the upper bound for ĝ(x(j)) in terms of the modeled constraints and their measured
values from the cycle just completed. Inequality (13), which is identical to Inequality (5),
represents the rede�ned constraints to be used in the customized NLP problem in place of
Inequality (2). Note that under deterministic conditions (accurate model, without noise), the
modeled constraint values ĝ(x) and their measured values g(x) would be identical, the con�dence
levels would be assigned the value of 1 (accurate model) and the noise bu�ers would have the
value of 0 (noise-free conditions). Under these conditions, the right hand side of Inequality (13)
would reduce to zero, and Inequality (13) would be equivalent to Inequality (2).

The conceptual basis of RCB's design is illustrated in Fig. 2. The dark and light data
points in this �gure represent measured and modeled values of a constraint for successive cycles,
respectively, and the dotted arrows point to the upper limit of the constraint in successively
rede�ned NLP problems. The top of the gray area represents the allowable limit of a constraint,
and the bottom of this area denotes the limit when noise is taken into consideration. Note
that the width of the gray area is the value of the noise bu�er. When the distance from a
particular measurement to its limit is less than its noise bu�er (data point within the gray area)
the constraint cannot be safely tightened. In such cases, the value of c[g(x(j � 1) + n] is set to
zero (e.g., Cycle 6) signifying that the modeled constraint value should not be changed. When
the distance from a particular measurement to its limit is greater than its noise bu�er (data
point outside the gray area) the constraint is tightened using Inequality (13). In such cases,
the distance from each constraint measurement (data point) to its upper limit represents the
slack in the constraint (0� g(x(j � 1)) in Inequality (12)), and the dotted arrows represent the
portion of the slack (�c[g(x(j � 1)) +n]) that RCB attempts to remove by rede�ning the NLP
problem. The actual change in the slack may be less than the desired change (Cycle 3) or greater
than the desired change (Cycle 4). As such, if the con�dence level were assigned the value of 1
(causing the dotted arrow to point to the bottom of the gray area) the actual constraint may
fall above the gray area and result in constraint violation. Assigning a value less than one to
the con�dence level provides a safety margin to improve the likelihood of constraint satisfaction.
This improvement, however, is provided at the cost of reducing the rate of convergence to the
optimum, as discussed in [7].
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Figure 2: Constraint tightening in RCB.
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As the NLP problem is repeatedly rede�ned and solved, the machine settings approach their
optimal values and the process and part quality measurements approach their respective limits.
At the steady state, some slack may remain in the constraints due to the conservative estimates
of the noise bu�ers, n. After all of the constraint measurements have converged within these
conservative noise bu�ers, the process can be repeated to obtain more constraint measurements
for improving the estimates of the noise bu�ers using Eq. (8). In cases where the new noise
bu�er estimates are smaller than their original values, the NLP problem can be rede�ned with
the new noise bu�ers so as to further tighten the constraints and reduce the objective function.

3.2 RCB Methodology Enhancements

The enhancements to RCB are designed to improve robustness, functionality, and exibility.
Robustness is improved by requiring that the noise bu�ers be computed from the standard
deviations of the estimated probability distributions of the constraints instead of allowing them
to be approximated based on the experience of the machine operator. This improves RCB's
control over the likelihood of constraint violation during and after optimization at the cost of
an increase in the number of process cycles. Functionality is improved by explicitly specifying
the sample size for estimating the constraints' probability distributions. Previously, the noise
bu�ers were re-computed after all constraints were tightened using conservative noise bu�ers
based on operator expertise. The size of the sample for re-computing the noise bu�ers was
determined by how many samples continued to fall within the conservative noise bu�ers, so
accurate estimations of the noise bu�ers could only obtained at the end of optimization and
only if the operator chose to continue measuring part quality. With the enhancements presented
here, the sample size is automatically increased or decreased throughout optimization as needed
to balance the need to ensure constraint satisfaction against the need to reduce the objective
function. Flexibility is improved by setting the maximum allowable probability of constraint
violation for each constraint individually. Thus, the corresponding noise bu�ers are estimated as
conservatively or aggressively as needed. From these probabilities, RCB automatically calculates
the corresponding sample size and noise bu�ers. This requires that the sample size be su�ciently
large to provide adequate accuracy when estimating the noise bu�ers and their corresponding
constraint satisfaction probabilities.

As stated above, the noise bu�ers are now computed from the standard deviations of the
constraints' estimated probability distributions as

n = k � s (14)

where s represents the sample standard deviation. The probability distributions are estimated
from the constraint measurements for a sample of process cycles with identical machine settings.
Initially, RCB uses 10 process cycles per sample, since the objective function has not been
reduced yet. Once estimates of the noise bu�ers have been obtained, RCB uses one process
cycle per sample until all of the constraint measurements are within their respective noise bu�er
regions (gray area in Figurer 2) or until a constraint is violated. If a constraint is violated, RCB
retreats to the previous machine settings, collects a 10 cycle sample of constraint measurements,
and re-computes the noise bu�ers. If a constraint is violated during this sample, RCB proceeds
as if the constraint were satis�ed except that the corresponding con�dence level is temporarily
set to 1.0, signifying that RCB should reduce the constraint by the measured violation plus
the noise bu�er in order to bring the bulk of the constraint's probability distribution below the
absolute limit of the constraint. If the con�dence level were not adjusted, the probability of
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constraint violation in subsequent cycles would be unacceptably high. Table 1 summarizes the
steps used in the application of RCB with the enhancements presented here.

4 GRINDING INVESTIGATION

The e�ectiveness of RCB is illustrated in simulation for internal cylindrical plunge grinding,
where six machine settings are adjusted to satisfy three inequality constraints and one equality
constraint.

In cylindrical grinding, material is removed from the internal cylindrical surface by feeding a
grinding wheel that is rotating at a high speed into the workpiece which rotates at a much lower
speed (see Fig. 3). The infeed control cycle u = [u1; u2; u3] is typically characterized by three
successive stages as illustrated in Fig. 4: (1) roughing with a relatively fast infeed velocity u1,
(2) �nishing with a slower infeed velocity u2, and (3) spark-out at zero infeed velocity (u3=0).
This is followed by rapid retraction to disengage the wheel from the workpiece.

Workpiece

Wheel

v
w

v
s

v
f

Figure 3: Diagram of an internal cylindrical plunge grinding operation.

In response to the controlled infeed, the radial size reduction of the workpiece follows the
actual infeed curve as shown in Fig. 4. The transient in the actual infeed at the beginning of
each stage is attributed mainly to the elastic deection of the system and to the radial wear
of the grinding wheel. This transient behavior can be approximated by a �rst order system
characterized by a time constant [13].

The constraint measurements were simulated using a grinding model de�ned as [17]:

Minimize cycle-time: T = t1 + t2 + t3 (15)

with respect to: u1; u2; t1; t2; t3; sd
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Figure 4: Illustration of a grinding cycle consisting of roughing, �nishing and spark-out
stages.

subject to :

g1 = z1 � q2 � 0 (burning constraint) (16)

g2 = Rm �Rmax � 0 (surface �nish constraint) (17)

g3 = r � rmax � 0 (out-of-roundness constraint) (18)

h1 = u1t1 + u2t2 ��r = 0 (size constraint) (19)

The objective function is the total cycle-time T , which is de�ned as the sum of the times for
the three successive infeed stages, [t1; t2; t3]. The machine settings are the stage times [t1; t2; t3],
the programmed infeed rates for the �rst two stages [u1; u2], and the dressing lead sd. For these
simulations, the wheel was dressed after each cycle using a single point diamond dresser. The
dressing lead sd, which speci�es the crossfeed per revolution of the wheel, determines the initial
sharpness of the wheel. The relationships among the constraints and machine settings are given
in the Appendix.

Minimization of the total cycle-time requires that tradeo�s among the three stage times
be balanced through an examination of their relationships with the various constraints using
Eqs. (16) - (19) and Eqs. (20) - (40) in the Appendix. The burning constraint in Inequality (16)
requires that the thermally damaged (burned) layer on the workpiece due to excessive grinding
temperatures during the roughing stage be completely removed during the subsequent �nishing
stage. As such, a deeper layer of thermally damaged material (depth of burn z1) caused by a more
aggressive roughing infeed rate u1 can be balanced by increasing the depth of material removal
in the �nishing stage q2. An alternative to this burning constraint is to completely avoid thermal
damage during the roughing stage, which is more restrictive but may be desirable for grinding of
critical components [17]. Inequality (17) de�nes the surface �nish constraint, where Rm denotes
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the measured surface roughness and Rmax its maximum allowable value. Inequality (18) de�nes
the out-of-roundness constraint, where r represents the out-of-roundness value and rmax the
maximum allowable out-of-roundness. Equality (19) de�nes the size requirement, where �r
denotes the radial depth of material to be removed.

Many of the coe�cients and exponents in the equations included in the Appendix were
empirically obtained under speci�c operating conditions. Under di�erent operating conditions,
the values of these coe�cients and exponents would be biased. In order to demonstrate RCB's
ability to cope with modeling bias, some of the model coe�cients and exponents were biased by a
random factor between +=�10% of their original values. Similarly, the simulation equations were
modi�ed to include noise in the constraint equations by multiplying the constrained variables
by a random factor between += � 10% of their original values. As such, the simulation di�ers
from the model used by RCB in two ways. First, the simulation uses biased parameters whereas
the model uses their nominal values. Second, the simulated constraint values are randomly
perturbed at each constraint evaluation, whereas the model will calculate identical constraint
values for identical machine settings.

The arithmetic average surface roughness constraint and out-of-roundness constraint were
selected as 0.7�m and 0.6�m, respectively. In these simulations, AISI52100 hardened steel
bearing workpieces with an internal diameter dw of 70mm and width b of 9mm were machined
using a 32A80M6VBE grinding wheel with an external diameter ds of 50mm. The peripheral
speeds of the wheel vs and the workpiece vw were 37m/s and 0.55 m/s, respectively.

5 GRINDING RESULTS

In this section, the enhancements presented in Section 2 are demonstrated using several examples
of RCB simulation runs. The �rst two examples demonstrate the advantage of RCB's use of
variable sample sizes. The �rst example was run with a constant sample size of 30. The second
example was run with sample sizes of 1 and 30. For iterations where the noise bu�ers were
estimated a sample size of 30 was used, whereas a sample size of 1 was used for iterations where
noise bu�ers were not estimated. The resulting cycle times and constraints are shown in Figs. 5
and 6. As can be seen in Figs. 5 and 6, the cycle time reduction and constraint tightening curves
are virtually identical, which demonstrates RCB's ability to tighten the constraints without
obtaining samples of the constraints for estimating the standard deviations of their probability
distributions.

The next two examples demonstrate RCB's ability to recuperate after a constraint violation
occurs. In the third example, the initial sample size for estimating the constraints' probability
distribution is set to ten. In this particular case (one of many such simulation runs) a small
constraint violation occured when the constraints were almost fully tightened. This constraint
violation happened because the standard deviation of the constraint's probability distribution
was underestimated. As such, when RCB tightened the constraints, the noise bu�er was too
small and the constraint was over-tightened. The constraint tightening curves for this example
is given in Fig. 7. As can be seen in Fig. 7, RCB adjusts the machine settings so that the
constraint's distribution is again within its allowable limit.

In the fourth and �nal example, RCB is given an initial point which results in a constraint
violation. The constraint measurements for this example are given in Fig. 8, which shows that
once again, RCB is able to recover from the constraint violation and continues with constraint
tightening (and cycle-time reduction, which is not shown).

The results presented in this section demonstrate the e�cacy of RCB as a methodology for
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Figure 5: Cycle-time reduction by RCB for examples 1 and 2.
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Figure 6: Constaint tightening by RCB for examples 1 and 2.

robust optimization of a manufacturing process subject to modeling uncertainty. Cycle-time is
reduced for internal cylindrical plunge grinding while satisfying constraints despite the presence
of noise and modeling bias.

6 CONCLUSION

In this paper, enhancements to Recursive Constraint Bounding have been developed for improv-
ing robustness, functionality, and exibility. RCB has been shown to be an e�ective methodology
for adjusting the machine settings from cycle to cycle in order to reduce cycle-time. RCB is
designed to cope with modeling uncertainty and process time-variability due to tool wear, and
can be used either as a selection guide to the machine operator or as the basis of a supervisory
module for production control. Since RCB uses separate con�dence levels and noise bu�ers
for each constraint, incorporating additional machine inputs or constraints does not result in a
combinatorial increase in computation time or convergence iterations. �
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Figure 7: Constaint tightening by RCB for example 3.
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Figure 8: Constaint tightening by RCB for example 4.
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Table 1: Algorithm for application of RCB with enhancements.

I. Setup optimization sub-problem
A. De�ne objective function
B. De�ne and model inequality and equality constraints
C. De�ne xLB and xUB

II. Setup RCB
A. Select conservative initial machine settings x(1)
B. Repeatedly run process with x(j) until initial

sample size is reached and compute the noise bu�ers n
C. Assign conservative values to the con�dence levels c
D. Set j to 1

III. Run process
A. Set sample iteration = 1
B. Run process with x(j) to obtain g(j)
C. If sample iteration < sample size

1. set sample iteration = sample iteration +1
2. go to III.B.

D. Else if sample size > 1,
1. compute noise bu�ers as n = k � s

2. set sample size = 1
E. Assess Optimality

1. If (0� n) � g � 0
a. if (sample size < max sample size)

i. set sample size = sample size +10
ii. go to III.A.

b. else end optimization
2. Else if g < 0

a. update rede�ned constraints
ĝ(x(j)) � ĝ(x(j � 1))� c[g(x(j � 1)) + n]

b. goto IV
3. Else (g > 0)

a. set sample size = 10
b. go to III.A.

IV. Run NLP
A. Obtain x(j + 1)
B. Set j to j + 1
C. Goto III
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APPENDIX

GRINDING RELATIONSHIPS

The following equations obtained from grinding theory are used for calculating and estimat-
ing the process parameters [17]:

a = vf=nw (20)

nw = vw=(�dw) (21)

de = (dsdw)=(dw � ds) (22)

vi = u
0

i � (u
0

i � vi�1)exp(�
ti
�
) (23)

qi = u
0

iti + � [(u
0

i � vi�1)exp(�
ti
�
)� (u

0

i � vi�1)] i = 1; 2; 3 (24)

u
0

i = ui=f (25)

f = 1 + dw=(dsG) (26)

P = :0138�dwvf + 9:62 � 10�7vs +

[8:55 � 10�6 + 2:10vw=(vsde)]vsv
�:5
w (�dwvfde)

:5Aeff (27)

Pb = 0:00617�dwvf + 0:0072(�dwdevfvw)
0:25 (28)

z = �1:449(
vwlc
4�

)0:37
2�

vw
ln[

�klc�mbvw

6:2��dwvf (
vwlc
4�

)0:53(u� 0:45uch)
] (29)

u = P=(�dwvf ) (30)

lc = (�dwdevf=vw)
0:5 (31)

r = �gn3k3v3dw=vw (32)

R = gn2RoS
x
da

y
d(
�dwv1
vs

)k1 [1 + exp(k2t3)] (33)

Rf = 1:5R (34)

Ra = [Rf + (Ro �Rf )exp(
nr � 1

no � 1
)] (35)

Aeff = gn1(�0:008)A0ln(1:4� 104m�) + 5:299 � 10�4Ls (36)

Ls =

"
u01(1� exp(�t1

�
))

2:5

#0:5
vs

(�20:25dwd0:5s )
(37)

� = 1:1� 10�11a0:75d s1:75d (38)

� = f(u1t1 � fq1)=u1 (39)

G = (�v1dw)=(�w1ds) = (v1dw)=[(u1 � v1)ds] (40)

a | depth of cut
ad | dressing depth
A0 | constant
Aeff | e�ective dullness
de | equivalent diameter
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dw | diameter of part
ds | diameter of wheel
f | modi�ed coe�cient
G | grinding ratio
k | thermal conductivity of part
lc | contact length
Ls | accumulated grinding length
m | constant
nw | rotational speed of workpiece
P | grinding power
Pb | burning power
qi | actual infeed for the ith stage
r | actual value of out-of-roundness
Ra | measured surface �nish
Ro | constant
sd | dressing lead
ti | grinding time for the ith stage
u | speci�c energy
uch | speci�c energy for chip formation
ui | programmed infeed rate

u
0

i | e�ective programmed infeed rate
vf | actual infeed rate
vi | actual infeed rate for the ith stage
vs | velocity of wheel
vw | velocity of workpiece
x | constant
y | constant
z | depth of burn
� | thermal di�usivity of part
� | fraction of �nishing stage with burning
� | equivalent dressing infeed angle
 | constant
�mb | critical temperature for burning
� | time constant
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